
Reasoning about Strategies of Multi-Agent Programs

Mehdi Dastani
Institute of Information and Computer Sciences

Utrecht University
Utrecht, the Netherlands

mehdi@cs.uu.nl

Wojciech Jamroga
Computer Science and Communication

University of Luxembourg,
and Department of Computer Science

Clausthal University of Technology
wojtek.jamroga@uni.lu

ABSTRACT
Verification of multi-agent programs is a key problem in agent re-
search and development. This paper focuses on multi-agent pro-
grams that consist of a finite set of BDI-based agent programs ex-
ecuted concurrently. We choose alternating-time temporal logic
(ATL) for expressing properties of such programs. However, the
original ATL is based on a synchronous model of multi-agent com-
putation while most (if not all) multi-agent programming frame-
works use asynchronous semantics where activities of different agents
are interleaved. Moreover, unlike in ATL, our agent programs do
not have perfect information about the current global state of the
system. They are not appropriate subjects for modal epistemic logic
either (since they do not know the global model of the system). We
begin by adapting the semantics of ATL to the situation at hand;
then, we consider the verification problem in the new setting and
present some preliminary results.

Categories and Subject Descriptors
I.2.5 [Artificial Intelligence]: Programming Languages and Soft-
ware; I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—Multiagent Systems; I.2.4 [Artificial Intelligence]: Knowl-
edge Representation Formalisms and Methods—Modal logic

General Terms
Languages, Algorithms, Verification

Keywords
Agent-oriented programming, strategic logic, model checking

1. INTRODUCTION
Specification and verification of agent-based systems is a key

problem in multi-agent research and development [9]. More re-
cently, there has been a shift focusing on the verification of multi-
agent programs, i.e., programs that are developed to implement
multi-agent systems [10, 15, 7]. These works aim at verifying
safety and liveness properties in terms of the internals of individual
agent programs such as beliefs, goals, and plans [6, 16, 5, 1, 3].
Examples of such properties are realism, various kinds of commit-
ment strategies, and communication abilities.
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This paper focuses on the verification of multi-agent programs,
each consisting of a finite set of BDI-based individual agent pro-
grams operating in a shared environment and executed concurrently.
We propose a framework that allows developers of multi-agent pro-
grams to check if (a subset of) individual agent programs can achieve
specific states of their shared environment together. One may for
example be interested in checking if a specific subset of agent pro-
grams, acting in a blocksworld environment, can cooperate to build
a tower of blocks or to prevent an existing tower from collapsing.

In order to develop such a verification framework, a logic used
for reasoning about multi-agent programs must be grounded in the
computation of these programs. We begin by presenting (in Sec-
tion 2) a simple multi-agent programming language that includes
programming constructs employed by most BDI-based agent-orien-
ted languages (e.g., [15, 7, 10]). Then, we discuss the choice of a
formalism for specification and verification of properties for multi-
agent programs. There are many logics that can be used for this pur-
pose. Likewise, we can choose among several different semantics
of program execution. We list some options and make (sometimes
tentative) choices in Section 3. In essence, we choose alternating-
time temporal logic with uniform strategies, interpreted over la-
beled interpreted systems that arise from the asynchronous seman-
tics of program execution.

Sections 4 and 5 present the formal framework that implements
our choices. That is, in Section 4 we present an operational seman-
tics for the programming language that generates appropriate mod-
els of multi-agent programs, and in Section 5 we define a variant of
alternating-time temporal logic (cf., e.g., [2, 17]) that seems suit-
able for reasoning about their properties. The logic can be used to
reason about possible executions of multi-agent programs, and tem-
poral patterns which can be enforced by agents and their groups.
In particular, it facilitates specification and verification of agents’
abilities wrt safety and/or liveness properties (with and without fair-
ness assumptions). Finally, in Section 6, we discuss the verification
problem for the setting: we establish basic complexity results, and
present some ideas for optimization of models.

2. PROGRAMMING LANGUAGE
In this section we present the syntax of a simple BDI-based

multi-agent programming language. The basic ingredients of this
language appear in the existing agent programming languages [15,
7, 10] so that the proposed approach can be considered as generic
and applicable to other BDI-based programming languages. In par-
ticular, the language allows for implementation of individual agents
with beliefs, goals, actions, plans, and planning rules. For the pur-
pose of this paper, we assume that a multi-agent program consists
of a set of programs for individual agents and a shared environment
in which all agents can perform actions. The environment is repre-
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sented by a set of literals. In consequence, it suffices to present the
syntax of the programming language for individual agent programs,
which we do in the following subsections.

2.1 Beliefs and Goals
The beliefs of an agent represent its information about its en-

vironment of action, while its goals represent situations the agent
wants to bring about (not necessarily all at once).1 For simplic-
ity, we represent an agent’s beliefs as a set of literals (for example,
{-carry, free_a} represents the agent’s belief that it is not
carrying a block and that block a is free) and goals as a set of con-
junctions of literals (e.g., {on_c_a and on_b_c, on_b_a}
represents the agent’s goal to have blocks c on a and b on c, and
a second goal to have block b on a). It is assumed that different
goals of an agent may not be achievable in one state. Moreover,
the beliefs and goals of an agent are related to each other: if an
agent believes p, then it will not pursue p as a goal (since p has al-
ready been achieved). The initial beliefs and goals of an agent are
specified by its program.

2.2 Basic Actions
Basic actions specify the capabilities an agent has to achieve its

goals. In this paper, we consider basic actions of an agent as being
specified in terms of both the agent’s beliefs as well as its exter-
nal environment. In particular, we assume that each basic action
of an agent is specified in terms of a set of pairs, each of which
consists of two pre-conditions and two post-conditions, cf. Re-
mark 1. One of the pre-conditions is a condition on the agent’s be-
liefs and the second is condition on its external environment. One
post-condition determines the update of the agent’s beliefs and the
second determines the update of its external environment. The pre-
and post-conditions are sets of literals. For example, consider the
specification of basic action put_b_c, which consists of two pairs
of pre- and post-conditions.

[-on_b_c]{carry} put_b_c {-carry}[ on_b_c]
[ on_b_c]{carry} put_b_c {-carry}[floor_b]

In this specification, the pre- and post-conditions on the agent’s
beliefs are placed within curly brackets {} and the pre- and post-
conditions on the agent’s environment are placed within square
brackets []. The belief pre-conditions of both pairs indicate that
the action of putting block b on block c can be executed if the agent
believes it is carrying a block. Their corresponding post-conditions
indicate that after the action execution the agent believes not car-
rying a block anymore. The environment pre- and post-conditions
of the first pair indicate that the execution of the action puts block
b on block c if it was not already the case. The conditions in the
second pair indicate that if block b was already on block c, then
the action put_b_c will cause block b to fall on the floor (pre-
sumably the agent believes wrongly that it is carrying block b, and
handles it in a wrong way).

In general, a basic action can be executed only if one of its be-
lief pre-conditions is derivable from the agent’s beliefs. In such
a case, we call the basic action executable. If none of the belief
pre-conditions is derivable from the agent’s beliefs, then the ex-
ecution of the action blocks. The execution of an executable ac-
tion will update the agent’s beliefs with the corresponding belief
post-condition of the action. We assume that basic actions main-
tain consistency of the agent’s beliefs, and that different belief pre-
conditions of one basic action cannot be satisfied in one state. The

1Note that this means that we only model so called achievement
goals here.

environment pre- and post-condition pairs are to specify the effect
of an executable action on its environment. If the environment pre-
condition of an executable action holds in the environment, then
the corresponding environment post-condition of the action will be
used to update the environment. If none of the environment pre-
conditions of an executable basic action holds, then the agent can
execute the action but the environment will not be updated. We
assume that different environment pre-conditions of a basic action
cannot be satisfied in one state.

In the following, we use prec(α) and post(α) to indicate the set
of all pre-conditions and post-conditions of action α, respectively.
Moreover, we use eprec(α), bprec(α), epost(α) and bpost(α) to
denote the environment pre-conditions, the belief pre-conditions,
the environment post-conditions, and the belief post-conditions of
α, respectively. Note that the same action may have different pre-
conditions and/or effects when executed by different agents. For
example, a humanoid robot must have its hands empty in order to
lift an object, while an Aibo should rather have its mouth empty
instead. We will add the agent’s name as a subscript in functions
prec, post, etc. if the agent is not clear from the context.

REMARK 1. Separate pre/postconditions wrt the agent’s beliefs
and the state of the environment allow to represent situations when
the agent’s beliefs are not objectively true. Moreover, they allow
to model scenarios where the agent’s expectations and effects of an
action are different. It is important since we do not presuppose any
relationship between beliefs and the objective state of the world.

In most existing agent programming languages, the internal and
external effects of an agent’s action are specified separately in the
agent program and the environment program. Interference between
both kinds of effects is handled by synchronization of the agent’s
and the environment’s actions. However, we do not assume any syn-
chronization mechanism in our execution semantics (see Section 4).
Note also that our approach allows to specify the interaction be-
tween the agent and the environment more directly. For example,
the sensing action can be given via clauses [p]{}sense{f(p)}[],
where f defines the agent’s sensing capabilities.

2.3 Plans
A plan consists of basic actions composed by sequence, con-

ditional choice and conditional iteration operators. The sequence
operator ; takes two plans as arguments and indicates that the
first plan should be performed before the second plan. The con-
ditional choice and conditional iteration operators allow branching
and looping, and generate plans of the form if φ then {π1}
else {π2} and while φ do {π} respectively. The condition
φ is evaluated with respect to the agent’s current beliefs. For exam-
ple, the following plan causes the agent to grasp block b and put it
on block c:

grasp_b ; put_b_c

2.4 Planning Rules
Planning rules are used to select a plan based on current goals

and beliefs. A planning rule consists of three parts: an (optional)
goal query, a belief query, and the body of the rule. The goal query
specifies the state to be achieved by the plan and the belief query
is used to denote the state the plan is believed to be executable.
Firing a planning rule causes the adoption of the plan which forms
the body of the rule. For example, consider the following planning
rule which states that “if the goal is to have block b on block c and
it is believed that block c is free, then block b should be grasped
and put on block c”:

on_b_c <- free_c | grasp_b ; put_b_c
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For simplicity, we assume that agents do not have initial plans,
i.e., plans can only be generated during the program execution by
planning rules.

2.5 Programming Language: Formal Syntax
The formal syntax of the simple multi-agent programming lan-

guage is given below in EBNF notation. We assume a set of belief
update actions and a set of propositions. We use 〈literal〉 to denote
a literal and 〈baction〉 to denote the name of a belief update action.

〈MA_Prog〉 ::= 〈Agnt_Prog〉 ("," 〈Agnt_Prog〉)*
〈Agnt_Prog〉 ::= "Actions:" 〈updatespecs〉

| "Beliefs:" 〈literals〉
| "Goals": 〈goals〉
| "Rules:" 〈rules〉

〈updatespecs〉 ::= 〈updatespec〉 ("," 〈updatespec〉)*
〈updatespec〉 ::= "[" 〈literals〉 "]" "{" 〈literals〉 "}"

〈baction〉
"{"〈literals〉"}" "[" 〈literals〉 "]"

〈literals〉 ::= 〈literal〉 ("," 〈literal〉)*
〈goals〉 ::= 〈goal〉 ("," 〈goal〉)*
〈goal〉 ::= 〈literal〉 | 〈goal〉 "and" 〈goal〉
〈plan〉 ::= 〈baction〉 | 〈sequenceplan〉

| 〈ifplan〉 | 〈whileplan〉
〈query〉 ::= 〈literal〉

| 〈query〉 "and" 〈query〉
| 〈query〉 "or" 〈query〉

〈sequenceplan〉 ::= 〈plan〉 ";" 〈plan〉
〈ifplan〉 ::= "if" 〈query〉 "then {" 〈plan〉 "}"

["else {" 〈plan〉 "}"]
〈whileplan〉 ::= "while" 〈query〉 "do {" 〈plan〉 "}"
〈rules〉 ::= 〈rule〉 ("," 〈rule〉)*
〈rule〉 ::= [〈query〉] "<-" 〈query〉 "|" 〈plan〉

In the rest of the paper, we ignore 〈ifplan〉 and 〈whileplan〉 con-
structs because of the space limitation. They can be integrated in
the framework in a fairly easy way.

2.6 BlocksWorld Example
In order to reduce the size of the example, we use G_a for grasp_a

(grasp block a), P_b_c for put_b_c (put block b on c), fr_c
for free_c (block c is free), and c for carry (carry a block).
The multi-agent program Blocks includes the following imple-
mentation of agent Ag1:

Actions:
[-on_d_b]{-c} G_b {c} []
[-on_b_c]{c} P_b_c {-c,-fr_c}[on_b_c]

Beliefs:
fr_c , -c

Goals:
on_c_a and on_b_c and on_d_b

Rules:
on_b_c <- fr_c | G_b ; P_b_c

and the following program implementing agent Ag2:

Actions:
[-on_b_c]{-c} G_c {c} []
[] {-c} G_d {c} []
[-on_c_a]{ c} P_c_a {-c,-fr_a}[on_c_a]
[-on_d_b]{ c} P_d_b {-c,-fr_b}[on_d_b]

Beliefs:
fr_a , fr_b , -c

Goals:

on_c_a and on_b_c and on_d_b
Rules:

on_d_b <- fr_b | G_d ; P_d_b
on_c_a <- fr_a | G_c ; P_c_a

In this example, both agents have the same goal, i.e., to have
block d on b, b on c, and c on a. Agent Ag1 initially believes that
block c is free and that it is not carrying a block. The agent is only
capable of grasping block b (e.g., because of its arm capability and
the shape of b) and putting it on block c, and it can generate a plan
to have block b on c. Agent Ag2 initially believes that blocks a
and b are free and that it is not carrying a block. It has capability of
grasping blocks c and d and putting them on other blocks. More-
over, it can generate plans to get blocks d on b and c on a. The
execution of the resulting multi-agent program will be explained in
Section 4 in more detail.

3. CHOOSING LOGIC AND SEMANTICS
There are many formal frameworks that can be used for mod-

eling, reasoning about, and verification of multi-agent programs.
In this section, we enumerate some of the options, and justify our
choices for the rest of the paper. Some of the choices are tentative;
we plan to explore other possibilities in future work.

First, let us discuss the semantics of program execution. Three
major options are:

1. Synchronous models: each transition corresponds to simul-
taneous execution of actions by all the agents,

2. Asynchronous models with interleaving: each transition cor-
responds to an action executed by a single agent; action se-
quences from multiple agents are interleaved,

3. Asynchronous models with interleaving and synchronization
by common action names.

Since the formal semantics of most BDI-based agent programming
languages has been already based on the asynchrony assumption,
and our proposed programming language does not include synchro-
nization, we choose option 2. However, both other options are very
interesting, and we plan to study them in the future.

Fairness assumptions are a closely related issue. We do not
presuppose fairness of the program execution. However, we will
show how fairness conditions can be specified directly in formulae
of the logic is expressive enough, and how one can reason about
properties of fair executions of programs (cf. Section 5.3).

Components of a system. Do we need a model of the exter-
nal world (shared environment of action)? And, if so, what is the
required relationship between agents’ beliefs and the actual prop-
erties of the environment? We consider the following possibilities:

1. No environment, agents’ beliefs are correct by definition,

2. With environment, beliefs are correct by definition,

3. With environment, beliefs can be correct or not.

The first option is sometimes used in frameworks for programming
single agents, but for a multi-agent program we need a medium for
agents’ interaction. Moreover, we must take into account incorrect
beliefs for a very simple reason: there is no way of ensuring that
the programmer has programmed agents’ beliefs so that they are
consistent with each other. Therefore we choose option 3.

The choice of logic is crucial for what we can express and what
kind of reasoning it facilitates. There are many logics of computa-
tion that can be used:

1. Dynamic logic [14] used primarily for reasoning about the
end result of actions or (sequential) programs;
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2. A variety of temporal logics based on the linear (LTL) and
branching models of time (CTL), or logics that embed both
perspectives (CTL*) [12];

3. Strategic logics with various degrees of expressivity: coali-
tion logic [20], alternating-time temporal logic ATL and its
more expressive variant ATL* [2]. Variants of the stit logic [4]
also fall into this category;

4. The above logics can be combined with epistemic (resp. dox-
astic) logic when the agents’ knowledge (resp. beliefs) are
important. The combination is non-trivial especially in the
case of strategic logics (cf. [17] for details).

In this work, we want to reason about what temporal patterns of
execution can be triggered by which agent(s), hence the choice of
ATL/ATL* seems most natural (it is much more expressive than
coalition logic, whereas stit has a very complicated semantics and
no immediate computational flavor). Beliefs are important for our
setting, but our agents are not appropriate subjects of modal epis-
temic/doxastic logic.Thus, doxastic operators Beli are applied to
propositional formulae only (the same holds for reasoning about
goals).

Models of the logic: the action/time structure follows in a nat-
ural way from the operational semantics of the programming lan-
guage presented in Section 4. Essentially, we deal with labeled
transition systems with nodes representing global states of the sys-
tem, and transitions labeled with the action that generates the tran-
sition and the agent that executes the action. Global system states
combine local states of all the components. Moreover, in order to
define the set of agents’ strategies appropriately, we use an implicit
epistemic structure by assuming that each agent can observe only
its own local state (and thus a strategy of agent i must specify the
same choices in global states that share the local state of i). In this
sense, our models come very close to interpreted systems [13].

Finally, an important semantic choice concerns capabilities of
agents (perfect vs. imperfect information, perfect vs. imperfect
memory/recall, cf. [22]). Since we explicitly model agents’ beliefs
about the current state of the world, it does not make sense to as-
sume perfect information (otherwise beliefs are identical with the
current state of the environment). Moreover, the belief base is as-
sumed to encapsulate all that the agent knows (or thinks) about the
world, which corresponds to the notion of memoryless agents (i.e.,
ones that have no extra memory outside their current state).

In the following sections, we present an implementation of the
choices outlined above.

4. OPERATIONAL SEMANTICS
We define the formal semantics of the agent programming lan-

guage in terms of a transition system. Each transition corresponds
to a single execution step and takes the system from one configu-
ration to another. Configurations consist of the beliefs, goals, and
plans of the agent. Which transitions are possible in a configuration
depends on the agent program execution strategy. We have chosen
asynchronous semantics of program execution, which means that
transitions of different agents are interleaved rather than executed
synchronously. Still, the scope of interleaving can be defined in at
least two different ways. We can assume that each action (even a
complex one, i.e., a plan) is treated as a whole and executed without
interruption from another agent, or we can allow for interleaving of
composite actions. Likewise, two execution strategies are also pos-
sible for execution of multiple plans by a single agent: one where
the selected plan is executed to completion before choosing another
plan, and another which interleaves the execution of multiple plans
with the adoption of new plans. Out of the four combinations, we

consider the two extremes here: complete execution of plans on
both inter- and intra-agent levels vs. interleaving of plans on both
inter- and intra-agent levels.

4.1 Configurations
A local state of an agent consists of the current beliefs, goals, and

plans of the agent. A global state of program execution collects
the current local states of all agents, plus the current state of the
environment.

DEFINITION 1. The configuration of a multi-agent program is
defined as 〈A1, . . . , An, χ〉, where Ai = 〈i, σ, γ, Π〉 is the config-
uration of agent i and χ is the state of the shared environment. In
Ai, i is the agent’s identifier, σ is a set of literals representing the
agent’s beliefs, γ is a set of conjunctions of literals representing
the agent’s goals, and Π is a set of plan entries representing the
agent’s current active plans.

For example, the initial configuration of the two agents presented
in section 2.6 is 〈Ag1, Ag2, χ〉, where
Ag1 = 〈1, {fr_c,−c}, {on_c_a ∧ on_b_c ∧ on_d_b}, ∅〉,
Ag2 = 〈2, {fr_a, fr_b,−c}, {on_c_a ∧ on_b_c ∧ on_d_b}, ∅〉,
and χ = { −on_c_a , −on_b_c , −on_d_b }.
Note that the blocks in the initial state of the environment do not
comply with the agents’ goals.

Executing a multi-agent program modifies its initial configura-
tion in accordance with the transition rules presented below.

4.2 Executing Actions of Different Agents
General Execution Rule. The following transition rule specifies
the transition of multi-agent programs based on interleaving of the
decisions generated by executing individual agents programs.

Ai
π!→ A′

i χ
i:π?→ χ′

〈A1, . . . , Ai, . . . , An, χ〉 i:π→ 〈A1, . . . , A′
i, . . . , An, χ′〉

The condition of this transition rule indicates that the individual
agent program i generates decision π in state Ai (changing the
state to A′

i) and the environment realizes the effect of that deci-
sion in its state χ (changing the state to χ′). The actual interleaving
strategy depends on the way individual actions can be selected, cf.
Section 4.3.

Execution of Shared Environment. Let i be an agent, α be a basic
action and χ be a state of the environment. We assume that an envi-
ronment update function for basic actions UpdateE(i, α, χ) = χ′

is given beforehand. In this paper, we use an update function that
consists in adding and removing atoms from the environment spec-
ified by the appropriate pre- and post-conditions:

UpdateE(i, α, χ) =

⎧⎨
⎩

(χ \ neg(eposti(α))) ∪ pos(eposti(α))
if χ |= ∧

eprec(α)
χ otherwise

where neg(X) = {p | −p ∈ X} and pos(X) = {p | p ∈ X} for
each set of literals X , and |= is the propositional entailment rela-
tion. The update function is extended to complex actions (plans) as
follows:

UpdateE(i, α; π, χ) = UpdateE(i, π, UpdateE(i, α, χ))

The following transition rule specifies the effect of agent i’s ac-
tions in the shared environment:

UpdateE(i, π, χ) = χ′

χ
i:π?→ χ′
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The multi-agent program presented in Section 2.6 has several
possible executions, among which the following: Ag2 performs
plan G_d;P_d_b followed by plan G_c;P_c_a, after which Ag1

performs plan G_b;P_b_c. Note that the last plan performed by
Ag1 will be blocked. Another execution is one where Ag2 first per-
forms plan G_c;P_c_a, then agent Ag1 performs G_b;P_b_c,
and finally agent Ag2 performs G_d;P_d_b. This execution a-
chieves the agents’ desired configuration of the blocks.

4.3 Execution of Individual Agent Programs
The execution of an individual agent program generates deci-

sions based on its beliefs, goals, and planning rules. In this paper,
we consider two execution strategies. In the first one, a planning
rule is applied only if there is no plan to execute. The execution of
a plan is atomic in the sense that different plans cannot be generated
and executed in the interleaving mode. In the second strategy, dif-
ferent planning rules can be applied before plans can be executed.
Moreover, different plans are executed in the interleaving mode.

Non-interleaving Execution Strategy. The effect of executing a
basic action for an agent program state is that it updates the beliefs
and goals. A basic action α can be executed if its precondition is
entailed by the agent’s beliefs, i,e., σ |= φ. Executing the action
adds the positive literals of its post-condition to the agent’s beliefs
and removes atoms of the negative literals. The belief update func-
tion UpdateB(α, σ) is formally defined based on belief pre- and
post-condition of the basic action as follows:

UpdateB(α, σ) =

⎧⎨
⎩

(σ \ neg(bpost(α))) ∪ pos(bpost(α))
if σ |= ∧

bprec(α)
UpdateB(α, σ) = ⊥ otherwise

UpdateB(α; π, σ) = UpdateB(π, UpdateB(α, σ)).

The following transition rule specifies the effect of the execution
of plan π on the state of an individual agent program.

UpdateB(π, σ) = σ′ = ⊥ γ′ = γ \ {φ ∈ γ | σ′ |= φ}
〈σ, γ, {π}〉 π!→ 〈σ′, γ′, {}〉

Note that the goals are changed as a consequence of the belief up-
date. In fact, the goals that are derivable from the updated beliefs
are considered achieved and removed from the set of goals.

The transition rules for composite plans by sequence and condi-
tional choice and loops can be defined in standard way. It is only
important to note that the condition of the conditional choice and
loops are evaluated with respect to the agent’s beliefs.

In order to generate plans, planning rules should be applied. Let
R be the set of planning rules of an agent program. The following
transition rule specifies the application of a planning rule.

(κ ← β | π) ∈ R φ ∈ γ φ |= κ σ |= β

〈σ, γ, {}〉 → 〈σ′, γ′, {π}〉
Note that this transition rule does not allow the application of more
than one planning rule as it requires that the set of plans should be
empty before a planning rule can be applied.

As an example, consider agent program Ag2 from Section 2.6.
Non-interleaving execution of this agent program does not allow
for executions where G_c follows directly after G_d (or vice versa).

Interleaving Execution Strategy. In this execution strategy, only
atomic actions are executed so that actions of different plans can be
interleaved. Note that this execution strategy makes it possible that
different plans of different agents are executed in the interleaving
mode. Let π be a plan (including the empty plan). The interleaving
execution strategy is formally defined by the following transition

rule:

α; π ∈ Π UpdateB(α, σ) = σ′ = ⊥ γ′ = γ \ {φ ∈ γ | σ′ |= φ}
〈σ, γ, Π〉 α!→ 〈σ′, γ′, (Π \ {α; π}) ∪ {π}〉

In order to generate more plans so that their execution can be in-
terleaved, we need to allow the application of more than one plan-
ning rule. This is done by the following transition rule (again, R is
the set of planning rules of the agent program):

(κ ← β | π) ∈ R φ ∈ γ φ |= κ σ |= β

〈σ, γ, Π〉 → 〈σ′, γ′, Π ∪ {π}〉
Note that the set of plans is not required to be empty now. Also, a
planning rule can be applied several times. If a language designer
considers such behavior undesirable, it can be avoided by adding
additional constraints to the above transition rule. We do not dis-
cuss the issue further as it is not relevant for this paper.

5. STRATEGIC LOGIC FOR PROGRAMS
In order to reason about multi-agent programs, we use a variant

of alternating-time temporal logic ATL [2]. ATL generalizes the
branching time logic CTL [12] by replacing path quantifiers E, A
with cooperation modalities 〈〈A〉〉. Informally, 〈〈A〉〉γ expresses
that the group of agents A have a collective strategy to enforce
temporal property γ. ATL formulae include temporal operators:
“ �” (“in the next state”), “�” (“always from now on”), “�” (“now
or sometime in the future”), U (strong “until”), and R (“release”).

For example, we can use the formula 〈〈{1}〉〉�win to specify that
agent 1 can eventually achieve a winning position in the game re-
gardless of what the other agents do, how actions are interleaved,
and so on. Moreover, formula 〈〈{1, 2}〉〉�safe says that agents 1
and 2 have a collective strategy that infallibly maintains safety of
the system. Besides liveness and safety properties, we can also
specify agents’ abilities wrt various kinds of fairness. For instance,
〈〈{i}〉〉��accessi says that agent i can secure access to some re-
sources infinitely many times, while 〈〈{i}〉〉(��accessi → �safe
expresses that if i is granted the access infinitely often then it can
successfully maintain the safety of the system.

Throughout the rest of the paper, we will write 〈〈a1, . . . , ar〉〉
instead of 〈〈{a1, . . . , ar}〉〉 to simplify the notation.

It is important to note that our treatment of the alternating-time
logic is non-standard. First, we assume that agents have imperfect
information and imperfect recall (cf. the discussion in [22]), which
limits their available strategies to uniform memoryless strategies.
In this sense, our logic can be seen as constructive strategic logic
CSL [17] without constructive epistemic operators. Second, we use
asynchronous models to define the semantics, whereas only syn-
chronous semantics has been used so far for ATL and its variants
(aside from a short discussion in [2] on how asynchronous systems
can be “simulated” by synchronous models). Third, we include
statements about agents’ beliefs and goals, but with a very limited
scope: they can refer only to objective properties of the world, just
like the agent programs presented in Section 2 can. We call the
resulting logic ATLP (“ATL for Programs”) for lack of a more in-
genious idea.

5.1 Syntax
Let Agt be the set of all agents, and Π the set of atomic proposi-

tions occurring in multi-agent programs. The language of ATLP is
formally defined by the following grammar:

ϕ0 ::= p | ¬ϕ0 | ϕ0 ∧ ϕ0,
ϕ ::= ϕ0 | Beliϕ0 | Goaliϕ0 | ¬ϕ | ϕ ∧ ϕ | 〈〈A〉〉γ,
γ ::= ϕ | ¬γ | γ ∧ γ | �γ | γ U γ,
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where i ∈ Agt is an agent, A ⊆ Agt is a group of agents, and
p ∈ Π is an atomic proposition. We also define �γ ≡ �U γ,
γ1 R γ2 ≡ ¬(¬γ1)U (¬γ2), and �γ ≡ ⊥R γ.

Formulae ϕ0 are propositional formulae and refer to simple facts
about the current state of the system. Formulae ϕ are called state
formulae and refer to (possibly more complex) properties of states.
Finally, γ are path formulae that describe temporal patterns of par-
ticular execution paths. Additionally, we call a path formula γ sim-
ple iff the temporal operators in γ are only applied to state subfor-
mulae (like in p1 U 〈〈A〉〉�p2, but not in (p1 ∨ �p1)U p2). More-
over, a (state or path) formula is flat if it does not include nested
cooperation modalities.

Variants of the Logic. As it is often the case, there is a tradeoff
between expressivity and complexity of decision procedures based
on the logic. We consider several variants of ATLP (in accordance
with the CTL and ATL tradition, cf. e.g. [21]). The full language is
denoted by ATL∗

P , whereas a severely restricted version in which
every occurrence of a cooperation modality is immediately fol-
lowed by exactly one temporal operator is called “vanilla” ATLP

(or simply ATLP if it does not cause any confusion).2 “Vanilla”
ATLP allows to express liveness and safety properties (as the ex-
amples at the beginning of Section 5 have already demonstrated),
and it is cheaper than ATL∗

P in terms of verification complexity (cf.
Section 6.1). On the other hand, it does not allow to specify fair-
ness conditions, which makes it useless for most scenarios (see the
discussion in Section 5.3). The “Extended ATLP” (EATLP) aug-
ments “vanilla” ATLP with an additional temporal primitive ��

(“infinitely often”). Finally EATL+
P allows cooperation modalities

to be followed by Boolean combinations of simple path formulae
(with the primitive temporal operators being U , ��).

5.2 Semantics
Models. We use the asynchronous labeled transition systems con-
structed in Section 4 as models of ATLP. We recall that states of a
system correspond to combinations 〈A1, . . . , An, χ〉 of agent con-
figurations Ai = 〈i, σ(Ai), γ(Ai), Π(Ai)〉 of individual agents
(where σ(Ai), γ(Ai), and Π(Ai) are the beliefs, goals, and plans
of agent i in configuration Ai), and the state χ of the shared envi-
ronment. Transitions are labeled by i:α where α is an action and i
is the agent that executes the action. We denote the set of i’s con-
figurations by Sti, the set of environment states by StE , and the set
of all global states of the system by St ⊆ St1 × · · · × Stn × StE .
Likewise, for a global state q ∈ St, qi will denote the i′s configu-
ration in q, and qE the state of the environment in q. The set of all
actions occurring in transition labels is denoted by Act.

A pointed model (M, q) is a model together with a state in it. In
the rest of the paper, we will use pmodel(P ) to denote the pointed
model (MP , q0) that consists of the transition system MP given by
the operational semantics of multi-agent program P plus state qo in
MP that corresponds to the initial configuration of P .

Truth of Formulae. In order to present semantic clauses for for-
mulae of the logic, we need to first define the notions of a strategy
and its outcome. A strategy of agent i specifies an executable action
of i for each i’s configuration. We will represent strategies of agent
i by functions si : Sti → Act such that σ(Ai) |= bpreci(si(Ai)).
A collective strategy for a group of agents A = {a1, . . . , ar} ⊆
Agt is simply a tuple sA = 〈sa1

, . . . , sar 〉 of strategies, one per
agent from A.

We define a path as a full3 sequence of states interleaved with
2In “vanilla” ATLP, the “release” operator R is added as another
primitive, since it cannot be expressed with U any more.
3I.e., either infinite or ending in a deadlock state

transitions. For path λ, we will denote the jth state on λ by λst[j]
and the jth transition on λ by λact[j]. λ[j,∞] denotes the part of
λ from state number j onwards. Function out(q, sA) returns the
set of all paths that may occur when agents A execute strategy sA

starting from state q:

out(q, sA) = {λ = q0(i0:α0)q1(i1:α1)q2 . . . | q0 = q and for
each j = 0, 1, . . . there is a transition from λst[j] to λst[j +
1] labeled with λact[j] = i:α, and if i ∈ A then α =
si(λ

st[j]i)}.

The semantics of ATL∗
P can be now given by the following clauses:

M, q |= p iff λst[0]E |= p;

M, q |= Beliϕ0 iff σ(λst[0]i) |= ϕ0;

M, q |= Goaliϕ0 iff g |= ϕ0 for some g ∈ γ(λst[0]i);

M, q |= ¬ϕ iff M, q |= ϕ;

M, q |= ϕ ∧ ψ iff M, q |= ϕ and M, q |= ψ;

M, q |= 〈〈A〉〉γ iff there is a collective strategy sA for agents A
such that for each path λ ∈ out(sA, q), we have M, λ |= γ;

M, λ |= ϕ iff M, λst[0] |= ϕ;

M, λ |= ¬γ iff M, λ |= γ;

M, λ |= γ1 ∧ γ2 iff M, λ |= γ1 and M, λ |= γ2;

M, λ |= �γ iff M, λ[1,∞] |= γ; and

M, λ |= γ1 U γ2 iff there is k ∈ N0 such that M, λ[k,∞] |= γ2

and M, λ[j,∞] |= γ1 for all 0 ≤ j < k.

For instance, formula 〈〈Ag1〉〉�tower, where tower ≡ on_d_b ∧
on_b_c ∧ on_c_a, does not hold for the blocksworld program in
Section 2.6. More formally, pmodel(Blocks) |= ¬〈〈Ag1〉〉�tower:
agent Ag1 cannot build the tower on its own.

Additional Remarks. We observe that 〈〈A〉〉γ does not mean that
the agents in A know how to play to enforce γ (they cannot, since
each a ∈ A does not even have to be aware of existence of the other
agents). It only means that A have an executable collective strategy
so that if they execute it then γ will be the case.

Note also that the universal path quantifier A (“for every path”)
of CTL can be expressed with 〈〈∅〉〉 in ATLP. Unlike in the origi-
nal ATL, the existential path quantifier E cannot be expressed with
〈〈Agt〉〉: first, memoryless strategies can yield only paths where
agents periodically repeat their choices; second, whether a partic-
ular path will be obtained depends not only on the agents’ choices
but also on the order in which their actions will be scheduled by
the execution platform (e.g., the Java Virtual Machine). On the
other hand, “there is a path” properties can be expressed as Eγ ≡
¬A¬γ ≡ ¬〈〈∅〉〉¬γ. Since all the considered variants of ATLP are
closed under negation (modulo equivalence of formulae), ¬γ can
be always transformed into an appropriate form.

5.3 Examples. Fairness Badly Needed!
Consider the blocksworld example from Section 2.6 and the prop-

erty tower ≡ on_d_b ∧ on_b_c ∧ on_c_a. We already mentioned
that pmodel(Blocks) |= ¬〈〈Ag1〉〉�tower. The other agent is in
no better position: pmodel(Blocks) |= ¬〈〈Ag2〉〉�tower. How-
ever, the agents have a collective strategy to build the tower to-
gether: pmodel(Blocks) |= 〈〈Ag1, Ag2〉〉�tower. Can any agent
achieve something on its own? Yes, for example we have that
pmodel(Blocks) |= 〈〈Ag1〉〉�BelAg1

carry1. But that is only be-
cause the agents in Blocks have been programmed so that the be-
havior of the system is almost deterministic. In particular, agent
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Ag2 must eventually come to a blocking point where it has to wait
for some action of Ag1.

Suppose, on the other hand, that we modify the programs of
Ag1, Ag2 so that the agents can freely grab and put down “their”
blocks whenever those are available. Then, 〈〈Ag1〉〉�BelAg1

carry1

does not hold any more: the execution platform can postpone Ag1’s
actions forever! More generally, agents’ achievement abilities are
very limited without fairness assumptions, as the following propo-
sition demonstrates.

PROPOSITION 1. For every multi-agent program P and ATLP

formula ϕ there is an agent i in P such that, for every coalition
A ⊆ Agt \ {i}, we have pmodel(P ) |= E�¬ϕ → ¬〈〈A〉〉�ϕ.

How can we express fairness? We suggest the following con-
struction. First, we augment programs with additional atoms acti,
one per agent. The atoms are supposed to keep track of the most
recent actor. That is, the environment postconditions are modified
as follows: epost′i(α) = eposti(α) ∪ {acti} ∪ {−actj | j = i}.
Now, for example, the EATLP formula 〈〈c〉〉��acti specifies that
there is a “controller” agent c who can enforce that only compu-
tations fair for agent i are executed. But that is still not enough to
express fairness with respect to all agents, and to reason about what
can be achieved if we take only fair computations into account.

As it turns out, EATL+
P is sufficient for such properties. Consider

the path formula fair ≡ ∧
i ��acti which expresses that, at no

future moment, an agent may be prevented from acting forever. The
EATL+

P formula 〈〈Ag1〉〉(fair → �BelAg1
carry1) says that Ag1

has a strategy to achieve BelAg1
carry1 for every fair computation,

which is indeed true for our modified blocksworld scenario.

6. VERIFICATION
Let P be a multi-agent program, (MP , q0) the pointed model of

P , and ϕ a state formula of ATL∗
P . The model checking problem for

P, ϕ asks whether MP , q0 |= ϕ. Thus, it is the decision problem
that takes either a program or its more extensive representation (as
a transition system), and a logical specification whose truth value
should be determined. In Section 6.1, we discuss the theoretical
complexity of model checking for different variants of ATLP. Un-
surprisingly, the problem is not easy; we make the first step towards
decreasing the complexity – at least for some programs – in Sec-
tion 6.2. We omit proofs due to lack of space; an interested reader
is referred to the technical report [11].

6.1 Complexity of Model Checking
Complexity of decision problems is always studied in relation to

the size of problem instances. In our case, this means that we in-
vestigate the complexity of model checking wrt the length of the
formula and the representation of the multi-agent program P , i.e.,
either the program itself or its model M . We give complexity re-
sults for both kinds of analysis.

THEOREM 1. Model checking ATL∗
P, EATL+

P , EATLP, and
“vanilla” ATLP is PSPACE-complete with respect to the size of
the program and the length of the formula.

That is, the complexity of verification is rather prohibitive. This,
however, is not due to our choice of logic: the same complexity re-
sults have been obtained for model checking “bare” temporal logics
LTL, CTL, and CTL* [21]). The complexity becomes a little more
optimistic when measured in terms of the size of the model rather
than the program. One should be cautious, however: the size of the
model is usually exponential in the original program!

THEOREM 2. Model checking ATL∗
P is PSPACE-complete with

respect to the number of transitions in M and the length of ϕ.

THEOREM 3. Model checking “vanilla” ATLP and EATLP is
ΔP

2 -complete wrt the no. of transitions in M and the length of ϕ.

THEOREM 4. Model checking EATL+
P is ΔP

3 -complete with re-
spect to the number of transitions in M and the length of ϕ.

According to the above results, EATL+
P seems a sensible choice:

it is expressive enough to capture most interesting properties of
multi-agent programs, but still distinctly cheaper than the full ATL∗

P
in terms of verification. However, complexity wrt the size of the
model often “hides” the exponential blowup that occurs during model
generation. Several techniques have been proposed to reduce the
complexity of models and facilitate model checking – most no-
tably, abstraction and partial order reduction. We make the first
step towards the latter kind of reduction in the next section.

6.2 Partial-Order Reduction
For an asynchronous agent system, the blowup in the size of

the model is partially due to exponentially many interleavings of
agents’ actions. Partial order reduction [8] is a well-known tech-
nique used to reduce the number of interleavings (and hence also
global states in the model) that must be taken into account. The
main idea behind the reduction is to collapse paths that differ only
in the ordering of mutually independent actions. This independence
is captured formally by an appropriate notion of stuttering equiva-
lence between paths and models. In this section, we define a stut-
tering equivalence for a subset of ATL∗

P that includes most (if not
all) formulae relevant for verification.

DEFINITION 2 (ATL�
P ). The language of ATL�

P consists of
all the flat formulae of ATL∗

P that include no �operator.

DEFINITION 3 (A-STRATEGIC EQUIVALENCE). Let P ⊆ Π
be a (sub)set of propositions, and let P B

i (resp. P G
i ) collect propo-

sitions that can appear in agent i’s belief (resp. goal) base. We
define labelsP (λ) as the sequence of: (1) valuations of proposi-
tions from P in states on λ, (2) valuations of propositions from
P B

i ∩P in i’s belief states on λ, and (3) valuations of propositions
from P G

i ∩ P in i’s goal states on λ, with subsequent identical en-
tries collapsed into a single entry. We also extend labelsP

i (λ) to
labelsP

A(λ) in a natural way.
We say that λ is A-stuttering equivalent to λ′ wrt P (written

λ ∼=P
A λ′) iff labelsP

A(λ) = labelsP
A(λ′). Pointed models (M, q0),

(M ′, q′0) are A-strategically equivalent wrt P (written (M, q0) ∼=P
A

(M ′, q′0)) iff for every sA in M there is s′A in M ′ with
outM (q0, sA) ∼=P

A outM′(q′0, s
′
A), and vice versa.

The following is a straightforward consequence of the result in [8].

THEOREM 5. If (M, q0) ∼=P
A (M ′, q′0) then for every ATL�

P
formula ϕ that includes only agents from A and propositions from
P , we have that M, q0 |= ϕ iff M ′, q′0 |= ϕ.

Defining an appropriate stuttering equivalence is the first (and
most important) step in adapting partial order reduction to our logic.
Then, one can use the equivalence to define a heuristics for model
(re)construction. We leave the second part for future work, and
refer to [8] for the general idea.

6.3 Stuttering Bisimulation
Unfortunately, the notion of strategic equivalence proposed in

Section 6.2 is only useful when the number of available strategies is
relatively small. In this section, we briefly outline a notion of equiv-
alence between program models, that can be used alternatively.
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DEFINITION 4 (A-BISIMULATION). Pointed models (M1, q1),
(M2, q2) are A-bisimilar wrt P (written (M1, q1) ∼P

A (M2, q2))
iff: (1) q1, q2 agree on A’s beliefs and goals, and on the “objective”
truth of propositions from P , (2) for every transition q1

i:α→ q′1, i ∈
A in M1 there is q2

i:α→ q′2 in M2 such that (M1, q
′
1) ∼P

A (M2, q
′
2),

(3) for every transition q1
r:α→ q′1, r /∈ A in M1 there is q2

r:α→ q′2 in
M2 such that (M1, q

′
1) ∼P

A (M2, q
′
2), (4) and vice versa.

DEFINITION 5 (STUTTERING A-BISIMULATION). To define
stuttering A-bisimulation wrt P (written (M1, q1) ≈P

A (M2, q2)),
we replace condition (3) in Definition 4 as follows: (3’) for every
transition sequence q1

r1:α1→ · · · rn:αn→ q′1, r1, . . . , rn /∈ A in M1

there is q2
r′
1
:α′

1→ · · · r′
m:α′

m→ q′2, r
′
1, . . . , r

′
m /∈ A in M2 such that

the two sequences stutteringly agree on A’s beliefs, A’s goals, and
propositions from P , and (M1, q

′
1) ≈P

A (M2, q
′
2).

THEOREM 6.
If (M1, q1) ∼P

A (M2, q2) then (M1, q1) ≈P
A (M2, q2).

THEOREM 7.
If (M1, q1) ≈P

A (M2, q2) then (M1, q1) ∼=P
A (M2, q2).

Thus, bisimulation is a special case of stuttering bisimulation,
which is in turn a case of strategic equivalence. Note that the full
notion of stuttering bisimulation allows us to merge all the labels of
the opponents’ actions into a single action label, collapse states that
do not change A’s position, and then remove sequences that display
the same pattern. By Theorems 7 and 5, such a model reduction
preserves the strategic abilities of coalition A, and hence also the
truth of flat 〈〈A〉〉γ formulae.

7. CONCLUSIONS
In this paper, we present an adaptation of the strategic logic ATL

to reasoning about multi-agent programs. We carefully outline pos-
sible choices regarding the model of execution, specification lan-
guage, and semantics of formulae. Then, we use a variant of ATL
with imperfect information and imperfect recall, and interpret its
formulae over asynchronous labeled transition systems that arise
from the operational semantics of the agent programming language.
Initial complexity results for the model checking problem suggest
that verification is feasible only for relatively small programs. Nev-
ertheless, some techniques can be used in order to cut down the
complexity in practice. We define an appropriate notion of stut-
tering equivalence that allows to reduce models of the logic where
their blowup is caused by interleaving of independent actions. To
our knowledge, it is the first attempt at applying a model reduction
technique for a variant of alternating-time logic.

We also argue that fairness is an indispensable notion when rea-
soning about what agents can achieve in an asynchronous setting,
and we show how it can be imposed in the object language of our
logic. Taking into account the complexity and expressivity of dif-
ferent variants of the logic, it seems that the variant EATL+

P strikes
the balance best: it enables to specify most interesting properties of
agent programs while keeping the verification complexity distinctly
lower than for the full ATL∗

P .
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